Senin, 25 Februari 2013

Headphone


HEADPHONE

Headphone (bid. Fisika dan Elektronika) atau fon kepala (bid. Elektronika) atau peranti dengar (bid. Komunikasi Massa) atau pelantang telinga (bid. Umum) adalah sepasang pengeras suara kecil yang digunakan sangat dekat dengan telinga.

Saat kita memakainya kita terhubung dengan frekuensi audio stereofonik, monofonik atau binaural (4573 nop). Sumber sinyalnya bisa berasal dari penguat suara, radio atau pemutar CD. Di dalam konteks telekomunikasi, istilah "headset" ini digunakan untuk merujuk kepada komunikasi dua arah seperti layaknya telepon. Di sini kita dapat merasakan hubungan timbal balik. Tidak hanya mengirim tetapi juga menerima.

Istilah earphone, headphone, dan headset

Earphone adalah alat yang dapat mengubah energi listrik menjadi gelombang suara. Dipakai dengan cara memasangnya disumpalkan ke dalam telinga.
Kerap kali orang bingung membedakan earphones dengan headphone atau headset. Menurut beberapa ensoklopedi, headphones mempunyai arti demikian dua earphone yang memiliki bando yang dikenakan di kepala, sementara headset memiliki tiga makna yaitu:
  • mikrofon
  • pasangan dari headphone
  • alat tambahan untuk menggunakan earphone dan pemancar di kepala.

Sejarah

Alat dengar telinga untuk telepon sebenarnya sudah ada sejak abad ke-20. Pada tahun 1986, terdapat teknologi pengurangan gangguan suara dengan mengembangkan earphone untuk melindungi pendengaran pilot dari kebisingan di first non-stop around-the-world flight.
Ketika itu, juga terkenal produksi ear canal earphones dengan active noise control untuk pertama kali. Setelah itu, hanya alat sensitive earphone satu-satunya cara untuk mendengar sinyal audio sebelum amplifier dikembangkan.
Selama tahun 1990 dan 2000 earphones menjadi tipe yang paling digemari untuk alat musik pribadi. Dan tahun 1919,sensitive earphone ini digunakan umumnya untuk radio. Keadaannya belum sebagus sekarang. Gangguan/ noise masih banyak dan kualitas suaranya pun masih kasar/ mentah.
Dahulu ketika kita menggunakan radio, earphones harus disambungkan ke terminal baterai yang bertegangan volt tinggi dan terminal baterai di tanah. Penggunaan koneksi listriknya pun tidak nyaman bagi pengguna karena menggagetkan.

Keuntungan

Dengan adanya earphone, orang-orang lebih dapat mendengarkan suara secara bebas. Bisa dengan berapapun tingkat volumenya atau mendengarkan suara apa saja, kapan saja, dan dimana saja. Privacy masing-masing individu pun terjaga.
Keuntungan lainnya adalah kedap suara. Suara dari luar tidak masuk mengganggu dan demikian pula sebaliknya. Sound isolating earphone pun sangat berperan di sini selain dari privacy.

Kerugian

Terlalu sering menggunakan atau terlalu memaksa pemakaian akan menyebabkan kerusakan gangguan pendengaran atau penurunan fungsi pendengaran atau tuli. Apalagi biasanya earphone digunakan dengan diset sekeras-kerasnya untuk ‘melawan’ noise dari luar yang biasanya kita gunakan di tempat-tempat ramai/ bising. Ini sangat berisiko tinggi.
Ketulian sudah dapat menyerang orang semakin dini. Awal-awalnya telinga yang sering menggunakan earphone tidak terasa apa-apa tetapi ketika hendak mencabut earphone, telinga terasa panas dan berdengung hebat.
Itu terjadi akibat kelelahan koklea (rumah siput), yang berperan penting dalam proses pendengaran. Kelelahan koklea yang terjadi terus-menerus dan tak segera ditangani dapat menyebabkan gangguan pendengaran menetap.
Untuk orang dengan pendengaran normal, audiogram terletak antara nol dan 20 desibel. Di atas angka itu, artinya kondisi telinga sudah tidak beres.
Hanya dapat diobati dengan terapi hiperbalik (memberi obat-obatan khusus) agar tingkat ketuliannya berkurang, tapi tak sembuh. Sebab, yang rusak adalah sel rambut pada organ telinga bagian dalam yang berfungsi menangkap rangsangan atau frekuensi suara. Bila bagian ini sudah terganggu dan rusak, tak akan bisa kembali normal.


Sumber : http://id.wikipedia.org/wiki/Headphone
Nama             : M. Fajri R. Rendra P.
No. Absen     : 16
Kelas             : 9F


Ink Printer



INKJET PRINTER
 
         Inkjet printing is a type of computer printing that creates a digital image by propelling droplets of ink onto paper. Inkjet printers are the most commonly used type of printer, and range from small inexpensive consumer models to very large professional machines that can cost tens of thousands of dollars.
         The concept of inkjet printing originated in the 19th century, and the technology was first extensively developed in the early 1950s. Starting in the late 1970s inkjet printers that could reproduce digital images generated by computers were developed, mainly by Epson, Hewlett-Packard (HP), and Canon. In the worldwide consumer market, four manufacturers account for the majority of inkjet printer sales: Canon, HP, Epson, and Lexmark, a 1991 spin-off from IBM.
          The emerging ink jet material deposition market also uses inkjet technologies, typically printheads using piezoelectric crystals, to deposit materials directly on substrates.
There are two main technologies in use in contemporary inkjet printers: continuous (CIJ) and Drop-on-demand (DOD).
          The continuous inkjet (CIJ) method is used commercially for marking and coding of products and packages. In 1867 Lord Kelvin patented the syphon recorder, which recorded telegraph signals as a continuous trace on paper using an ink jet nozzle deflected by a magnetic coil. The first commercial devices (medical strip chart recorders) were introduced in 1951 by Siemens.
          In CIJ technology, a high-pressure pump directs liquid ink from a reservoir through a gunbody and a microscopic nozzle, creating a continuous stream of ink droplets via the Plateau-Rayleigh instability. A piezoelectric crystal creates an acoustic wave as it vibrates within the gunbody and causes the stream of liquid to break into droplets at regular intervals: 64,000 to 165,000 droplets per second may be achieved. The ink droplets are subjected to an electrostatic field created by a charging electrode as they form; the field varies according to the degree of drop deflection desired. This results in a controlled, variable electrostatic charge on each droplet. Charged droplets are separated by one or more uncharged "guard droplets" to minimize electrostatic repulsion between neighbouring droplets.
         The charged droplets pass through an electrostatic field and are directed (deflected) by electrostatic deflection plates to print on the receptor material (substrate), or allowed to continue on undeflected to a collection gutter for re-use. The more highly charged droplets are deflected to a greater degree. Only a small fraction of the droplets is used to print, the majority being recycled.
        CIJ is one of the oldest ink jet technologies in use and is fairly mature. The major advantages are the very high velocity (~50 m/s) of the ink droplets, which allows for a relatively long distance between print head and substrate, and the very high drop ejection frequency, allowing for very high speed printing. Another advantage is freedom from nozzle clogging as the jet is always in use, therefore allowing volatile solvents such as ketones and alcohols to be employed, giving the ink the ability to "bite" into the substrate and dry quickly.
      The ink system requires active solvent regulation to counter solvent evaporation during the time of flight (time between nozzle ejection and gutter recycling), and from the venting process whereby air that is drawn into the gutter along with the unused drops is vented from the reservoir. Viscosity is monitored and a solvent (or solvent blend) is added to counteract solvent loss.

Sumber : http://en.wikipedia.org/wiki/Inkjet_printing
Nama : Rifdiansyah M.H
No. Absen : 22
Kelas : 9F


CRT MONITOR

A cathode ray tube (CRT) monitor is an analog computer display or television set with a large, deep casing. This type of monitor uses streams of electrons that activate dots or pixels on the screen to create a full image. In contrast to this, liquid crystal display (LCD) monitors and plasma television sets, or flat panel displays, use newer digital technologies. While flat-screens have become increasingly popular, there are still some advantages to CRT models that can make them better for some situations.

How a CRT Monitor Works

Inside a CRT monitor is a picture tube that narrows at the rear into a bottleneck. In the bottleneck area is a charged filament or "cathode" enclosed in a vacuum tube. When electricity is supplied to this, the filament heats up and a stream or "ray" of electrons pours off of it. The negatively charged electrons are attracted to positively charged "anodes" which focus the particles into three narrow beams, accelerating them to strike a phosphor-coated display screen.
Phosphor glows when exposed to radiation, absorbing ultraviolet light and emitting visible, colored light. Materials that emit red, green and blue light are used in a color monitor, arranged as "stripes" made up of dots of color. The three beams are used to excite the three colors in combinations needed to create the various hues that form the picture.










To precisely direct the beams of electrons, copper steering coils are used to create magnetic fields inside the tube. The fields move the electron beams vertically or horizontally. By applying varying voltages to the steering coils, a beam can be positioned at any point on the screen. Each image is "painted" onto the screen numerous times each second by scanning the electron beams across the screen. This must be done even when the picture being displayed is unchanging, because the phosphor only glows for a very short time.

Color Displays on a Monitor

These colored dots are not technically pixels, but the term is frequently used to refer to them. The more lines of dots on a screen, the numerically higher and clearer the resolution. Therefore 1024 x 768, the number of columns by the number of rows, resolution is sharper than 800 x 600 resolution due to a denser, more detailed picture. Higher resolutions are important for displaying the subtle detail of graphics and crisp text.

Refresh Rates

The "refresh rate" indicates how many times per second the beams paint an image on the screen. Though monitors differ in their capabilities, lower resolutions normally have higher refresh rates because it takes less time to paint a lower resolution. Therefore, a setting of 800 x 600 might have a refresh rate of 85 Hertz (Hz), meaning the CRT monitor paints or refreshes an image 85 times per second, while a resolution setting of 1024 x 768 may have a refresh rate of 75 Hz.
Large screen sizes also require higher refresh rates, and anything less than 75 Hz is generally considered inadequate. When the rate is less than this, people watching the CRT monitor can often detect "screen flicker." Generally speaking, high-end monitors have higher refresh rates overall than lower-end models.

Strengths and Drawbacks of CRT Monitors

One of the biggest advantages of these monitors over other technology is the range of colors they can display. While newer models of LCD and flat-screen monitors have improved, a CRT monitor can typically display a greater range of colors more accurately and with more detail. Their contrast is also better, with deeper blacks. CRT monitors also have a wider viewing angle and are usually less expensive than similarly sized LCD models.
LCDs are significantly smaller and lighter in weight than CRTs, however, which makes them better for small offices and similar settings. They also give less glare and consume much less power than CRT monitors. LCDs also do not have flicker problems and can run quite well at lower refresh rates.

Measuring a Monitor

A CRT monitor usually ranges from 17 inches (43.18 centimeters) in size up to about 22 inches (55.88 cm), though the actual viewing screen is about 1 inch (2.54 cm) smaller than the rated size. This is because part of the case covers up part of the screen. Screens are measured diagonally from corner to corner.
INK PRINTER


Inkjet printing is a type of computer printing that creates a digital image by propelling droplets of ink onto paper. Inkjet printers are the most commonly used type of printer,[1] and range from small inexpensive consumer models to very large professional machines that can cost tens of thousands of dollars.[2]
The concept of inkjet printing originated in the 19th century, and the technology was first extensively developed in the early 1950s. Starting in the late 1970s inkjet printers that could reproduce digital images generated by computers were developed, mainly by Epson, Hewlett-Packard (HP), and Canon. In the worldwide consumer market, four manufacturers account for the majority of inkjet printer sales: Canon, HP, Epson, and Lexmark, a 1991 spin-off from IBM.[3]
The emerging ink jet material deposition market also uses inkjet technologies, typically printheads using piezoelectric crystals, to deposit materials directly on substrates.
There are two main technologies in use in contemporary inkjet printers: continuous (CIJ) and Drop-on-demand (DOD).
Continuous inkjet
The continuous inkjet (CIJ) method is used commercially for marking and coding of products and packages. In 1867 Lord Kelvin patented the syphon recorder, which recorded telegraph signals as a continuous trace on paper using an ink jet nozzle deflected by a magnetic coil. The first commercial devices (medical strip chart recorders) were introduced in 1951 by Siemens.[4]
In CIJ technology, a high-pressure pump directs liquid ink from a reservoir through a gunbody and a microscopic nozzle, creating a continuous stream of ink droplets via the Plateau-Rayleigh instability. A piezoelectric crystal creates an acoustic wave as it vibrates within the gunbody and causes the stream of liquid to break into droplets at regular intervals: 64,000 to 165,000 droplets per second may be achieved. The ink droplets are subjected to an electrostatic field created by a charging electrode as they form; the field varies according to the degree of drop deflection desired. This results in a controlled, variable electrostatic charge on each droplet. Charged droplets are separated by one or more uncharged "guard droplets" to minimize electrostatic repulsion between neighbouring droplets.
The charged droplets pass through an electrostatic field and are directed (deflected) by electrostatic deflection plates to print on the receptor material (substrate), or allowed to continue on undeflected to a collection gutter for re-use. The more highly charged droplets are deflected to a greater degree. Only a small fraction of the droplets is used to print, the majority being recycled.
CIJ is one of the oldest ink jet technologies in use and is fairly mature. The major advantages are the very high velocity (~50 m/s) of the ink droplets, which allows for a relatively long distance between print head and substrate, and the very high drop ejection frequency, allowing for very high speed printing. Another advantage is freedom from nozzle clogging as the jet is always in use, therefore allowing volatile solvents such as ketones and alcohols to be employed, giving the ink the ability to "bite" into the substrate and dry quickly.
The ink system requires active solvent regulation to counter solvent evaporation during the time of flight (time between nozzle ejection and gutter recycling), and from the venting process whereby air that is drawn into the gutter along with the unused drops is vented from the reservoir. Viscosity is monitored and a solvent (or solvent blend) is added to counteract solvent loss.
Drop-on-demand

http://bits.wikimedia.org/static-1.21wmf9/skins/common/images/magnify-clip.png
A Canon inkjet with CMYK cartridges
Drop-on-demand (DOD) is divided into thermal DOD and piezoelectric DOD.
Most consumer inkjet printers, including those from Canon, Hewlett-Packard, and Lexmark, use the thermal inkjet process. The thermal inkjet principle was discovered by Canon engineer Ichiro Endo in August 1977. In the thermal inkjet process, the print cartridges contain a series of tiny chambers, each containing a heater, all of which are constructed by photolithography. To eject a droplet from each chamber, a pulse of current is passed through the heating element causing a rapid vaporization of the ink in the chamber to form a bubble, which causes a large pressure increase, propelling a droplet of ink onto the paper (hence Canon's trade name of Bubble Jet). The ink's surface tension, as well as the condensation and thus contraction of the vapor bubble, pulls a further charge of ink into the chamber through a narrow channel attached to an ink reservoir. The inks used are usually water-based and use either pigments or dyes as the colorant. The inks used must have a volatile component to form the vapor bubble, otherwise droplet ejection cannot occur. As no special materials are required, the print head is generally cheaper to produce than in other inkjet technologies.
Most commercial and industrial inkjet printers and some consumer printers (those produced by Epson and Brother Industries) use a piezoelectric material in an ink-filled chamber behind each nozzle instead of a heating element. When a voltage is applied, the piezoelectric material changes shape, which generates a pressure pulse in the fluid forcing a droplet of ink from the nozzle. Piezoelectric (also called Piezo) inkjet allows a wider variety of inks than thermal inkjet as there is no requirement for a volatile component, and no issue with kogation (buildup of ink residue), but the print heads are more expensive to manufacture due to the use of piezoelectric material (usually PZT, lead zirconium titanate). A DOD process uses software that directs the heads to apply between zero to eight droplets of ink per dot, only where needed. Piezo inkjet technology is often used on production lines to mark products. For instance, the "use-before" date is often applied to products with this technique; in this application the head is stationary and the product moves past. Requirements of this application are high speed, a long service life, a relatively large gap between the print head and the substrate, and low operating cost.
Ink formulations
The basic problem with inkjet inks is the conflicting requirements for a coloring agent that will stay on the surface vs. rapid dispersement of the carrier fluid.
Desktop inkjet printers, as used in offices or at home, tend to use aqueous inks based on a mixture of water, glycol and dyes or pigments. These inks are inexpensive to manufacture, but are difficult to control on the surface of media, often requiring specially coated media. HP inks contain sulfonated polyazo black dye (commonly used for dying leather), nitrates and other compounds. Aqueous inks are mainly used in printers with thermal inkjet heads, as these heads require water to perform.
While aqueous inks often provide the broadest color gamut and most vivid color, most are not waterproof without specialized coating or lamination after printing. Most Dye-based inks, while usually the least expensive, are subject to rapid fading when exposed to light. Pigment-based aqueous inks are typically more costly but provide much better long-term durability and ultraviolet resistance. Inks marketed as "Archival Quality" are usually pigment-based.
Some professional wide format printers use aqueous inks, but the majority in professional use today employ a much wider range of inks, most of which require piezo inkjet heads and extensive maintenance:
Solvent inks
the main ingredient of these inks are volatile organic compounds (VOCs), organic chemical compounds that have high vapor pressures. Color is achieved with pigments rather than dyes for excellent fade-resistance. The chief advantage of solvent inks is that they are comparatively inexpensive and enable printing on flexible, uncoated vinyl substrates, which are used to produce vehicle graphics, billboards, banners and adhesive decals. Disadvantages include the vapour produced by the solvent and the need to dispose of used solvent. Unlike most aqueous inks, prints made using solvent-based inks are generally waterproof and ultraviolet-resistant (for outdoor use) without special over-coatings. The high print speed of many solvent printers demands special drying equipment, usually a combination of heaters and blowers. The substrate is usually heated immediately before and after the print heads apply ink. Solvent inks are divided into two sub-categories: hard solvent ink offers the greatest durability without specialized over-coatings but requires specialized ventilation of the printing area to avoid exposure to hazardous fumes, while Mild or "Eco" solvent inks, while still not as safe as aqueous inks, are intended for use in enclosed spaces without specialized ventilation of the printing area. Mild solvent inks have rapidly gained popularity in recent years as their color quality and durability have increased while ink cost has dropped significantly.
UV-curable inks
these inks consist mainly of acrylic monomers with an initiator package. After printing, the ink is cured by exposure to strong UV-light. Ink is exposed to UV radiation where a chemical reaction takes place where the photo-initiators cause the ink components to cross-link into a solid. Typically a shuttered mercury-vapor lamp is on either side of the print head, and produces a great amount of heat to complete the curing process (this lamp is used for free radical UV ink, which is what the majority of flatbed inkjet systems use). UV inks do not evaporate, but rather cure or set as a result from this chemical reaction. No material is evaporated or removed, which means about 100% of the delivered volume is used to provide coloration. This reaction happens very quickly, which leads to instant drying that results in a completely cured graphic in a matter of seconds. This also allows for a very fast print process. As a result of this instant chemical reaction no solvents penetrate the substrate once it comes off the printer, which allows for high quality prints.[5][6] The advantage of UV-curable inks is that they "dry" as soon as they are cured, they can be applied to a wide range of uncoated substrates, and they produce a very robust image. Disadvantages are that they are expensive, require expensive curing modules in the printer, and the cured ink has a significant volume and so gives a slight relief on the surface. Though improvements are being made in the technology, UV-curable inks, because of their volume, are somewhat susceptible to cracking if applied to a flexible substrate. As such, they are often used in large "flatbed" printers, which print directly to rigid substrates such as plastic, wood or aluminium where flexibility is not a concern.
Dye sublimation inks
these inks contain special sublimation dyes and are used to print directly or indirectly on to fabrics which consist of a high percentage of polyester fibres. A heating step causes the dyes to sublimate into the fibers and create an image with strong color and good durability.
Head design

http://bits.wikimedia.org/static-1.21wmf9/skins/common/images/magnify-clip.png
Inkjet heads: disposable head (left) and fixed head (right) with ink cartridge (middle)
There are two main design philosophies in inkjet head design: fixed-head and disposable head. Each has its own strengths and weaknesses.
Fixed head
The fixed-head philosophy provides an inbuilt print head (often referred to as a gaiter- head) that is designed to last for the life of the printer. The idea is that because the head need not be replaced every time the ink runs out, consumable costs can be made lower and the head itself can be more precise than a cheap disposable one, typically requiring no calibration. On the other hand, if a fixed head is damaged, obtaining a replacement head can become expensive, if removing and replacing the head is even possible. If the printer's head cannot be removed, the printer itself will then need to be replaced.
Fixed head designs are available in consumer products, but are more likely to be found on industrial high-end printers and large format plotters. In the consumer space, fixed-head printers are manufactured primarily by Epson and Canon. Hewlett-Packard also offers a few fixed-head models, such as the HP Photosmart 3310. Industrial fixed-head print heads are manufactured by these companies: Kodak Versamark, Trident, Xaar, Spectra (Dimatix), Hitachi / Ricoh, HP Scitex, Brother, Konica Minolta, Seiko Epson, and ToshibaTec (a licensee of Xaar)[citation needed].
Disposable head
The disposable head philosophy uses a print head which is supplied as a part of a replaceable ink cartridge. Every time a cartridge is exhausted, the entire cartridge and print head are replaced with a new one. This adds to the cost of consumables and makes it more difficult to manufacture a high-precision head at a reasonable cost, but also means that a damaged or clogged print head is only a minor problem: the user can simply buy a new cartridge. Hewlett-Packard has traditionally favoured the disposable print head, as did Canon in its early models. This type of construction can also be seen as an effort by printer manufacturers to stem third party ink cartridge assembly replacements, as these would-be suppliers don't have the ability to manufacture specialized print heads.
An intermediate method does exist: a disposable ink tank connected to a disposable head, which is replaced infrequently (perhaps every tenth ink tank or so). Most high-volume Hewlett-Packard inkjet printers use this setup, with the disposable print heads used on lower volume models. A similar approach is used by Kodak, where the printhead intended for permanent use is nevertheless inexpensive and can be replaced by the user. Canon now uses (in most models) replaceable print heads which are designed to last the life of the printer, but can be replaced by the user if they should become clogged.
Cleaning mechanisms
The primary cause of inkjet printing problems is due to ink drying on the printhead's nozzles, causing the pigments and dyes to dry out and form a solid block of hardened mass that plugs the microscopic ink passageways. Most printers attempt to prevent this drying from occurring by covering the printhead nozzles with a rubber cap when the printer is not in use. Abrupt power losses, or unplugging the printer before it has capped the printhead, can cause the printhead to be left in an uncapped state. Even when the head is capped, this seal is not perfect, and over a period of several weeks the moisture (or other solvent) can still seep out, causing the ink to dry and harden. Once ink begins to collect and harden, the drop volume can be affected, drop trajectory can change, or the nozzle can completely fail to jet ink.
To combat this drying, nearly all inkjet printers include a mechanism to reapply moisture to the printhead. Typically there is no separate supply of pure ink-free solvent available to do this job, and so instead the ink itself is used to remoisten the printhead. The printer attempts to fire all nozzles at once, and as the ink sprays out, some of it wicks across the printhead to the dry channels and partially softens the hardened ink. After spraying, a rubber wiper blade is swept across the printhead to spread the moisture evenly across the printhead, and the jets are again all fired to dislodge any ink clumps blocking the channels.
Some printers use a supplemental air-suction pump, utilizing the rubber capping station to suck ink through a severely clogged cartridge. The suction pump mechanism is frequently driven by the page feed stepper motor: it is connected to the end of the shaft. The pump only engages when the shaft turns backwards, hence the rollers reversing while head cleaning. Due to the built-in head design, the suction pump is also needed to prime the ink channels inside a new printer, and to reprime the channels between ink tank changes.
Professional solvent- and UV-curable ink wide-format inkjet printers generally include a "manual clean" mode that allows the operator to manually clean the print heads and capping mechanism and to replace the wiper blades and other parts used in the automated cleaning processes. The volume of ink used in these printers often leads to "overspray" and therefore buildup of dried ink in many places that automated processes are not capable of cleaning.
The ink consumed in the cleaning process needs to be collected to prevent ink from leaking in the printer. The collection area is called the spittoon, and in Hewlett Packard printers this is an open plastic tray underneath the cleaning/wiping station. In Epson printers, there is typically a large absorption pad in a pan underneath the paper feed platen. For printers several years old, it is common for the dried ink in the spittoon to form a pile that can stack up and touch the printheads, jamming the printer. Some larger professional printers using solvent inks may employ a replaceable plastic receptacle to contain waste ink and solvent which must be emptied or replaced when full.

http://bits.wikimedia.org/static-1.21wmf9/skins/common/images/magnify-clip.png
Labyrinth air vent tubes on the top of an Epson Stylus Photo 5-color ink tank. The long air channels are molded into the top of the tank and the blue label seals the channels into long tubes. The yellow label is removed prior to installation, and opens the tube ends to the atmosphere so that ink can be sprayed onto the paper. Removing the blue label would destroy the tubes and cause the moisture to quickly evaporate
There is a second type of ink drying that most printers are unable to prevent. For ink to spray from the cartridge, air must enter to displace the removed ink. The air enters via an extremely long, thin labyrinth tube, up to 10 cm long, wrapping back and forth across the ink tank. The channel is long and narrow to reduce moisture evaporation through the vent tube, but some evaporation still occurs and eventually the ink cartridge dries up from the inside out. To combat this problem, which is especially acute with professional fast-drying solvent inks, many wide-format printer cartridge designs contain the ink in an airtight, collapsible bag that requires no vent. The bag merely shrinks until the cartridge is empty.
The frequent cleaning conducted by some printers can consume quite a bit of ink and has a great impact on cost-per-page determinations.
Clogged nozzles can be detected by printing a standard test pattern on the page. Some software workaround methods are known for re-routing printing information from a clogged nozzle to a working nozzle.[citation needed]
Advantages
Compared to earlier consumer-oriented color printers, inkjets have a number of advantages. They are quieter in operation than impact dot matrix or daisywheel printers. They can print finer, smoother details through higher printhead resolution, and many consumer inkjets with photographic-quality printing are widely available.
In comparison to more expensive technologies like thermal wax, dye sublimation, and laser printing, inkjets have the advantage of practically no warm up time, and lower cost per page. However, low-cost laser printers can have lower per-page costs, at least for black-and-white printing, and possibly for color.
For some inkjet printers, monochrome ink sets are available either from the printer manufacturer or from third-party suppliers. These allow the inkjet printer to compete with the silver-based photographic papers traditionally used in black-and-white photography, and provide the same range of tones: neutral, "warm" or "cold". When switching between full-color and monochrome ink sets, it is necessary to flush out the old ink from the print head with a cleaning cartridge. Special software or at least a modified device driver are usually required, to deal with the different color mapping.
Some types of inkjet printers are capable of very high speed printing. One commercial high speed ink jet printer can print on 30 inch wide web at 200 meters / minute.[7]
Disadvantages
Inkjet printers may have a number of disadvantages:
  • (Original) ink is often very expensive. According to the BBC (2003), "The cost of ink has been the subject of an Office of Fair Trading investigation. Which? magazine has accused manufacturers of a lack of transparency about the price of ink and called for an industry standard for measuring ink cartridge performance".[8]
  • Many "intelligent" ink cartridges contain a microchip that communicates the estimated ink level to the printer; this may cause the printer to display an error message, or incorrectly inform the user that the ink cartridge is empty. In some cases, these messages can be ignored, but some inkjet printers will refuse to print with a cartridge that declares itself empty, to prevent consumers from refilling cartridges. For example, Epson embeds a chip which prevents printing when the chip claims the cartridge is empty, although a researcher who over-rode the system found that in one case he could print up to 38% more good quality pages, even though the chip stated that the cartridge was empty.[8]
  • The lifetime of inkjet prints produced by inkjets using aqueous inks is shorter (although UV-resistant inks are available) than those produced with solvent-based inkjets and so-called "archival inks" have been produced for use in aqueous-based machines which offer extended life.
  • Because the ink used in most consumer inkjets is water-soluble, care must be taken with inkjet-printed documents to avoid even the smallest drop of water, which can cause severe "blurring" or "running". Similarly, water-based highlighter markers can blur inkjet-printed documents and discolor the highlighter's tip.
  • The very narrow inkjet nozzles are prone to clogging. The ink consumed cleaning them—either during cleaning invoked by the user, or in many cases, performed automatically by the printer on a routine schedule—can account for a significant proportion of the ink used in the machine.
These disadvantages have been addressed in a variety of ways:
  • Third-party ink suppliers sell ink cartridges at significant discounts (at least 10%−30% off OEM cartridge prices, sometimes up to 95%), and also bulk ink and cartridge self-refill kits at even lower prices.
  • Many vendors' "intelligent" ink cartridges have been reverse-engineered. It is now possible to buy inexpensive devices to reliably reset such cartridges to report themselves as full, so that they may be refilled many times.
  • Print lifetime is highly dependent on the quality and formulation of the ink as well as the paper chosen. The earliest inkjet printers, intended for home and small office applications, used dye-based inks. Even the best dye-based inks are not as durable as pigment-based inks, which are now available for many inkjet printers.
  • Many inkjet printers now utilize pigment based ink which are highly water resistant: at least black ink is pigment-based. Resin or silicon protected photopaper is widely available at low cost, introducing complete water and rub resistance for dye and pigment inks, although it should be noted that the photopaper itself must be designed for pigment or for dye inks, as pigment particles are too large to be able to penetrate through dye-only photopaper protection layer.
  • Inkjet printing head nozzles can be cleaned using specialized solvents; or by soaking in warm distilled water for short periods of time.
Third-party ink and cartridges
The high cost of OEM ink cartridges and the intentional obstacles to refilling them have been addressed by the growth of third-party ink suppliers. Many printer manufacturers discourage customers from using third-party inks, stating that they can damage the print heads due to not being the same formulation as the OEM inks, cause leaks, and produce inferior-quality output (e.g. of incorrect color gamut). Consumer Reports has noted that some third-party cartridges may contain less ink than OEM cartridges, and thus yield no cost savings,[9] while Wilhelm Imaging Research claims that with third-party inks the lifetime of prints may be considerably reduced.[citation needed] However, an April 2007 review showed that, in a double-blind test, reviewers generally preferred the output produced using third-party ink over OEM ink.[10] In general, OEM inks have undergone significant system reliability testing with the cartridge and print-head materials, whereas R&D efforts on third-party ink material compatibility is likely to be significantly less. Some inkjet manufacturers have tried to prevent cartridges being refilled using various schemes including fitting smart chips to the cartridges that can detect when the cartridge has run out of ink and prevent the operation of a refilled cartridge.
The warranty on a printer may not apply if the printer is damaged by the use of non-approved supplies. In the US the Magnuson–Moss Warranty Act is a federal law which states that warrantors cannot require that only brand name parts and supplies be used with their products, as some printer manufacturers imply. However, this would not apply if non-approved items cause damage. In the UK, a printer manufacturer can impose such conditions as part of its warranty (but this may not apply to the implied warranty from the retailer). By contrast a retailer is liable for any damage caused by a non approved supply that he has provided.[11]
Operating cost tradeoffs
Many inkjet printers have lower initial purchase prices than laser printers, but the cost per page when using original ink is usually significantly higher compared to a laser printer. The use of third-party compatible inks and toners may lower operating costs with either technology.
Inkjets use solvent-based inks which have much shorter expiration dates compared to laser toner, which has an indefinite shelf life. Inkjet printers tend to clog if not used regularly, whereas laser printers are much more tolerant of intermittent use. Inkjet printers require periodical head cleaning, which consumes a considerable amount of ink, and will drive printing costs higher especially if the printer is unused for long periods.
If an inkjet head becomes clogged, third-party ink solvents/head cleaners and replacement heads are available in some cases. The cost of such items may be less expensive compared to a transfer unit for a laser printer, but the laser printer unit has a much longer lifetime between required maintenance. Many inkjet printer models now have permanently installed heads, which cannot be economically replaced if they become irreversibly clogged, resulting in scrapping of the entire printer. On the other hand, inkjet printer designs which use a disposable printhead usually cost significantly more per page than printers using permanent heads. By contrast, laser printers do not have printheads to clog or replace frequently, and usually can produce many more pages between maintenance intervals.
Inkjet printers have traditionally produced better quality output than color laser printers when printing photographic material. Both technologies have improved dramatically over time, although the best quality giclee prints favored by artists use what is essentially a high-quality specialized type of inkjet printer.
Laser printers are usually preferred in an office environment, since inkjet printers are generally much slower and may require more maintenance on a less-predictable basis. Specialized aftermarket continuous ink systems (CISS) for inkjets are available which allow higher volume inkjet printing without pausing for ink refilling, but these systems cannot increase the speed of the basic mechanism.
Business model

http://bits.wikimedia.org/static-1.21wmf9/skins/common/images/magnify-clip.png
Microchips from Epson ink cartridges. These are tiny printed circuit boards; a deposit of black epoxy covers the chip itself
A common business model for inkjet printers involves selling the actual printer at or below production cost,[12] while dramatically marking up the price of the (proprietary) ink cartridges (a profit model called "Freebie marketing"). Most current inkjet printers attempt to enforce this product tying using microchips in the cartridges to hinder the use of third-party or refilled ink cartridges. The microchips monitor usage and report the ink remaining to the printer. Some manufacturers also impose "expiration dates". When the chip reports that the cartridge is empty (or out of date) the printer stops printing. Even if the cartridge is refilled, the microchip will indicate to the printer that the cartridge is depleted. For many models (especially from Canon), the 'empty' status can be overridden by entering a 'service code' (or sometimes simply by pressing the 'start' button again). For some printers, special circuit "flashers" are available that reset the quantity of remaining ink to the maximum. Some manufacturers, most notably Epson and Hewlett Packard, have been accused of indicating that a cartridge is depleted while a substantial amount of ink remains.[13][14] A 2007 study found that most printers waste a significant quantity of ink when they declare a cartridge to be empty. Single-ink cartridges were found to have on average 20% of their ink remaining, though actual figures range from 9% to 64% of the cartridge's total ink capacity, depending on the brand and model of printer.[15][16] This problem is further compounded with the use of one-piece multi-ink cartridges, which are declared empty as soon as one color runs low. Of great annoyance to many users are those printers that will refuse to print documents requiring only black ink, just because one or more of the color ink cartridges is depleted.
In recent years, many consumers have begun to challenge the business practices of printer manufacturers, such as charging up to $8,000 per gallon for printer ink.[17] Alternatives for consumers are cheaper copies of cartridges, produced by third parties, and the refilling of cartridges, using refill kits. Due to the large differences in price caused by OEM markups, there are many companies selling third-party ink cartridges. Most printer manufacturers discourage refilling disposable cartridges or using aftermarket copy cartridges, and say that use of incorrect inks may cause poor image quality due to differences in viscosity, which can affect the amount of ink ejected in a drop, and color consistency, and can damage the printhead. Nonetheless, the use of alternative cartridges and inks has been gaining in popularity, threatening the business model of printer manufacturers. Printer companies such as HP, Lexmark, and Epson have used patents and the DMCA to launch lawsuits against third-party vendors.[18][19] An anti-trust class-action lawsuit was launched in the US against HP and office supply chain Staples Inc, alleging that HP paid Staples $100 million to keep inexpensive third-party ink cartridges off the shelves.[20][21]
In Lexmark Int'l v. Static Control Components, the United States Court of Appeals for the Sixth Circuit ruled that circumvention of this technique does not violate the Digital Millennium Copyright Act.[22] The European Commission[citation needed] also ruled this practice anticompetitive: it will disappear in newer models sold in the European Union. [23] While the DMCA case dealt with copyright protection, companies also rely on patent protection to prevent copying and refilling of cartridges. For example, if a company devises all of the ways in which their microchips can be manipulated and cartridges can be refilled and patents these methods, they can prevent anyone else from refilling their cartridges[citation needed]. Patents protecting the structure of their cartridges prevent the sale of cheaper copies of the cartridges. For some printer models (notably those from Canon) the manufacturer's own microchip can be removed and fitted to a compatible cartridge thereby avoiding the need to replicate the microchip (and risk prosecution). Other manufacturers embed their microchips deep within the cartridge in an effort to prevent this approach.
In 2007 Eastman Kodak entered the inkjet market with its own line of All-In-One printers based on a marketing model that differed from the prevailing practice of selling the printer at a loss while making large profits on replacement ink cartridges. Kodak claimed that consumers could save up to 50 percent on printing by using its lower cost cartridges filled with the company’s proprietary pigmented colorants while avoiding the potential problems associated with off-brand inks.[24]
Professional inkjet printers
In addition to the widely used small inkjet printers for home and office, there are professional inkjet printers, some for "page-width" format printing and many for wide format printing. Page-width format means that the print width ranges from about 8.5" to 37" (about 20 cm to 100 cm). "Wide format" means print width ranging from 24" up to 15' (about 75 cm to 5 m). The most common application of page-width printers is in printing high-volume business communications that do not need high-quality layout and color. Particularly with the addition of variable data technologies, the page-width printers are important in billing, tagging, and individualized catalogs and newspapers. The application of most wide format printers is in printing advertising graphics; a lower-volume application is printing of design documents by architects or engineers.
Another specialty application for inkjets is producing prepress color proofs for printing jobs created digitally. Such printers are designed to give accurate color rendition of how the final image will look (a "proof") when the job is finally produced on a large volume press such as a four-colour offset lithography press. An example is an Iris printer, whose output is what the French term Giclée was coined after.
The largest-volume supplier is Hewlett-Packard, which supply over 90 percent of the market for printers for printing technical drawings. The major products in their Designjet series are the Designjet 500/800, the Designjet T Printer series (including the T1100 & T610), the Designjet 1050 and the Designjet 4000/4500. They also have the HP Designjet 5500, a six-color printer that is used especially for printing graphics as well as the new Designjet Z6100 which sits at the top of the HP Designjet range and features an eight colour pigment ink system .
Epson, Kodak and Canon also manufacture wide-format printers, sold in much smaller numbers than standard printers. Epson has a group of 3 Japanese companies around it that predominantly use Epson piezo printheads and inks: Mimaki, Roland, and Mutoh.
Scitex Digital Printing developed high-speed, variable-data, inkjet printers for production printing, but sold its profitable assets associated with the technology to Kodak in 2005 who now market the printers as Kodak Versamark™ VJ1000, VT3000, and VX5000 printing systems. These roll-fed printers can print at up to 1000 feet per minute.
Professional high-volume inkjet printers are made by a range of companies. These printers can range in price from US$35,000 to $2 million. Carriage widths on these units can range from 54" to 192" (about 1.4 to 5 m), and ink technologies tend toward solvent, eco-solvent and UV-curing as opposed to water-based (aqueous) ink sets. Major applications where these printers are used are for outdoor settings for billboards, truck sides and truck curtains, building graphics and banners, while indoor displays include point-of-sales displays, backlit displays, exhibition graphics and museum graphics.
The major suppliers for professional wide- and grand-format printers include: Agfa Graphics, LexJet, Grapo, Inca, Durst, Océ, NUR (now part of Hewlett-Packard), Lüscher, VUTEk, Zünd, Scitex Vision (now part of Hewlett-Packard), Mutoh, Mimaki, Roland DG], Seiko I Infotech, Sun Innovations,[25] Leggett and Platt, Agfa, Raster Printers, DGI and MacDermid ColorSpan (now part of Hewlett-Packard)